1.2 Тангенциальное и нормальное ускорение

Случай прямолинейного движения изображен на рис. 1.2.1. При больших временах зависимость координаты от времени представляет собой параболу.





рис 1.2.1

В общем случае движение точки может быть криволинейным. Рассмотрим этот тип движения. Если траектория точки произвольная кривая, то скорость и ускорение точки при ее движении по этой кривой меняются по величине и направлению.





рис1.2.2

Выберем произвольную точку на траектории. Как всякий вектор, вектор ускорения можно представить в виде суммы его составляющих по двум взаимно перпендикулярным осям. В качестве одной из осей возьмем направление касательной в рассматриваемой точке траектории, тогда другой осью окажется направление нормали к кривой в этой же точке.

Составляющая ускорения, направленная по касательной к траектории, носит название тангенциального ускорения at, а направленная ей перпендикулярно — нормального ускорения an.

Получим формулы, выражающие величины at, и an через характеристики движения. Для простоты рассмотрим вместо произвольной криволинейной траектории плоскую кривую. Окончательные формулы остаются справедливыми и в общем случае неплоской траектории.

Благодаря ускорению скорость точки приобретает за время dt малое изменение dv. При этом тангенциальное ускорение, направленное по касательной к траектории, зависит только от величины скорости, но не от ее направления. Это изменение величины скорости равно dv. Поэтому тангенциальное ускорение может быть записано как производная по времени от величины скорости:




(1.2.1)

С другой стороны, изменение dvn, направленное перпендикулярно к v, характеризует только изменение направления вектора скорости, но не его величины.





рис1.2.3

Как видно из рис.1.2.3 , и, таким образом, с точностью до величины второго порядка малости величина скорости остается неизменной v=v'.

Найдем величину an. Проще всего это сделать, взяв наиболее простой случай криволинейного движения — равномерное движение по окружности. При этом at=0. Рассмотрим перемещение точки за время dt по дуге dS окружности радиуса R.





рис 1.2.4

Скорости v и v' , как отмечалось, остаются равными по величине. Изображенные на рис.1.2.4 треугольники оказываются, таким образом, подобными (как равнобедренные с равными углами при вершинах). Из подобия треугольников следует , откуда находим выражение для нормального ускорения:




(1.2.2)

Формула для полного ускорения при криволинейном движении имеет вид:



(1.2.3)

Подчеркнем, что соотношения (1.2.1), (1.2.2) и (1.2.3) справедливы для всякого криволинейного движения, а не только для движения по окружности. Это связано с тем, что всякий участок криволинейной траектории в достаточно малой окрестности точки можно приближенно заменить дугой окружности. Радиус этой окружности, называемый радиусом кривизны траектории, будет меняться от точки к точке и требует специального вычисления. Таким образом, формула (1.2.3) остается справедливой и в общем случае пространственной кривой.

Последнее изменение: Вторник, 11 марта 2014, 20:46