5.4 Несамостоятельные и самостоятельные газовые разряды

Характер газового разряда определяется составом газа, его температурой и давлением, размерами, конфигурацией и материалом электродов, приложенным напряжением, плотностью тока.

Рассмотрим цепь, содержащую газовый промежуток (рис. 39.1), подвергающийся непрерывному, постоянному по интенсивности воздействию ионизатора.



рис 39.1

В результате действия ионизатора газ приобретает некоторую электропроводность и в цепи потечет ток, зависимость которого от приложенного напряжения дана на рис. 39.2. На участке кривой ОА сила тока возрастает пропорционально напряжению, т.е. выполняется закон Ома. При дальнейшем увеличении напряжения закон Ома нарушается: рост силы тока замедляется (участок АВ) и наконец прекращается совсем (участок ВС). Это достигается в том случае, когда ионы и электроны, создаваемые внешним ионизатором за единицу времени, за это же время достигают электродов. В результате получаем ток насыщения  значение которого определяется мощностью ионизатора. Ток насыщения, таким образом, является мерой ионизирующего действия ионизатора. Если в режиме ОС прекратить действие ионизатора, то прекращается и разряд. Разряды, существующие только под действием внешних ионизаторов, называются несамостоятельными. При дальнейшем увеличении напряжения между электродами сила тока вначале медленно (участок CD), а затем резко (участок DE) возрастает.



рис 39.2

Разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным.

Рассмотрим условия возникновения самостоятельного разряда. Как уже указывалось ранее, при больших напряжениях между электродами газового промежутка (см. рис. 39.1) ток сильно возрастает (участки CD и DE на рис. 39.2). При больших напряжениях возникающие под действием внешнего ионизатора электроны, сильно ускоренные электрическим полем, сталкиваясь с нейтральными молекулами газа, ионизируют их, в результате чего образуются вторичные электроны и положительные ионы (процесс 1 на рис. 39.3). Положительные ионы движутся к катоду, а электроны к аноду. Вторичные электроны вновь ионизируют молекулы газа, и, следовательно, общее количество электронов и ионов будет возрастать по мере продвижения электронов к аноду лавинообразно. Это является причиной увеличения электрического тока на участке CD (см. рис. 39.2). Описанный процесс называется ударной ионизацией.

Однако ударная ионизация под действием электронов недостаточна для поддержания разряда при удалении внешнего ионизатора. Для этого необходимо, чтобы электронные лавины «воспроизводились», т.е. чтобы в газе под действием каких-то процессов возникали новые электроны. Такие процессы схематически показаны на рис. 39.3: 1) ускоренные полем положительные ионы, ударяясь о катод, выбивают из него электроны (процесс 2); 2) положительные ионы, сталкиваясь с молекулами газа, переводят их в возбужденное состояние; переход таких молекул в нормальное состояние сопровождается испусканием фотона (процесс 3); 3) фотон, поглощенный нейтральной молекулой, ионизирует ее, происходит так называемый процесс фотонной ионизации молекул (процесс 4); 4) выбивание электронов из катода под действием фотонов (процесс 5).



рис 39.3

Наконец, при значительных напряжениях между электродами газового промежутка наступает момент, когда положительные ионы, обладающие меньшей длиной свободного пробега, чем электроны, приобретают энергию, достаточную для ионизации молекул газа (процесс 6), и к отрицательной пластине устремляются ионные лавины. Когда возникают кроме электронных лавин еще и ионные, сила тока растет уже практически без увеличения напряжения (участок DE на рис. 39.2).

В результате описанных процессов (1 – 6) число ионов и электронов в объеме газа лавинообразно возрастает и разряд становится самостоятельным, т.е. сохраняется после прекращения действия внешнего ионизатора. Напряжение, при котором возникает самостоятельный разряд, называется напряжением пробоя.

Последнее изменение: Понедельник, 2 июня 2014, 13:22