1.1 электрический заряд

Еще в глубокой древности было известно, что янтарь, потертый о шерсть, притягивает легкие предметы. Однако только в конце XVI века английский врач Джильберт подробно исследовал это явление и нашел, что аналогичным свойством обладают многие другие вещества. Тела, способные, подобно янтарю после натирания притягивать легкие предметы, он назвал наэлектризованными (от греческого слова электрон - янтарь). Сейчас мы говорим, что тела при этом приобретают электрические заряды, а сами эти тела называем заряженными.

Bce тела в природе способны электризоваться, т.e. приобретать электрический заряд. Наличие электрического заряда проявляется в том, что заряженное тело взаимодействует с другими заряженными телами. Простыми опытами установлено, что существуют два типа электрических зарядов: заряды, подобные возникающим на стекле, потертом о кожу (их условно назвали положительными), и заряды, подобные возникающим на эбоните, потертом о мех (их условно назвали отрицательными). Заряды одного знака отталкиваются, разных знаков – притягиваются друг другом.

Опыт с султанчиками.

Электрический заряд является неотъемлемым свойством некоторых элементарных частиц. Заряд всех элементарных частиц (если он не равен нулю) одинаков по абсолютной величине. Eгo можно назвать элементарным зарядом. Положительный элементарный заряд мы будем обозначать буквой е:

Кл

K числу элементарных частиц принадлежат, в частности, электрон (несущий отрицательный заряд – е), протон (несущий положительный заряд ) и нейтрон (заряд которого равен нулю). Из этих частиц построены атомы и молекулы любого вещества, поэтому электрические заряды входят в состав всех тел. Обычно частицы, несущие заряды разных знаков, присутствуют в равных количествах и распределены в теле с одинаковой плотностью. B этом случае алгебраическая сумма зарядов в любом элементарном объеме тела равна нулю, и каждый такой объем (и тело в целом) будет нейтральным. Если каким-либо образом создать в теле избыток частиц одного знака (соответственно недостаток частиц другого знака), тело окажется заряженным. Можно также, не изменяя общего количества положительных и отрицательных частиц, вызвать их перераспределение в теле таким образом, что в одной части тела возникнет избыток зарядов одного знака, в другой – другого. Это можно осуществить, приблизив к незаряженному металлическому телу другое, заряженное тело.

Опытным путем (1910 – 1914) американский физик Роберт Милликен (1868 – 1953) показал, что электрический заряд дискретен, т. е. заряд любого тела составляет целое кратное от элементарного электрического заряда е:



(1.1)

где N – целое число

Однако элементарный заряд настолько мал, что возможную величину макроскопических зарядов можно считать изменяющейся непрерывно.

Если физическая величина может принимать только определенные дискретные значения, говорят, что эта величина квантуется. Факт, выражаемый формулой (1.1), означает, что электрический заряд квантуется.

Величина заряда, измеряемая в различных инерциальных системах отсчета, оказывается одинаковой. Следовательно, электрический заряд является релятивистски инвариантным. Отсюда вытекает, что величина заряда не зависит от того, движется этот заряд или покоится.

Из обобщенных опытных данных был установлен фундаментальный закон природы, экспериментально подтвержденный в 1843 г. английским физиком М. Фарадеем (1791 – 1867), – закон сохранения заряда: алгебраическая сумма электрических зарядов любой замкнутой системы (системы, не обменивающейся зарядами с внешними телами) остается неизменной, какие бы процессы не происходили внутри этой системы.

Отметим, что закон сохранения электрического заряда тесно связан с релятивистской инвариантностью заряда. Действительно, если бы величина заряда зависела от его скорости, то, приведя в движение заряды одного какого-то знака, мы изменили бы суммарный заряд изолированной системы.

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники. Проводники – тела, в которых электрический заряд может перемещаться по всему его объему. Проводники делятся на две группы: 1) проводники первого рода (металлы) – перенос в них зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот) – перенос в них зарядов (положительных и отрицательных ионов) ведет к химическим изменениям. Диэлектрики (например, стекло, пластмассы) – тела, в которых практически отсутствуют свободные заряды. Полупроводники (например, германий, кремний) занимают промежуточное положение между проводниками и диэлектриками. Указанное деление тел является весьма условным, однако большое различие в них концентраций свободных зарядов обуславливает огромные качественные различия в их поведении и оправдывает поэтому деление тел на проводники, диэлектрики и полупроводники.

Единица электрического заряда – кулон (Кл) – электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с:

[q] = 1 Кл,

Последнее изменение: Вторник, 27 мая 2014, 14:01